欢迎书友访问966小说
首页大数据为什么让人不自由02 更杂:不是精确性,而是混杂性

02 更杂:不是精确性,而是混杂性

        历史上很多时候,人们会把通过测量世界来征服世界视为最大的成就。事实上,对精确度的高要求始于13世纪中期的欧洲。那时候,天文学家和学者对时间、空间的研究采取了比以往更为精确的量化方式,用历史学家阿尔弗雷德·克罗斯比(Alfred Crosby)的话来说就是“测量现实”。

        帕特·赫兰德(Pat oo Muca,then‘Good Enough’Is Good Enough)的文章中,他把这称为一个重大的转变。分析了被各种各样质量参差不齐的数据所侵蚀的传统数据库设计的核心原则,他得出的结论是,“我们再也不能假装活在一个齐整的世界里”。他认为,处理海量数据会不可避免地导致部分信息的缺失。虽然这本来就是有“损耗性”的,但是能快速得到想要的结果弥补了这个缺陷。赫兰德总结说:“略有瑕疵的答案并不会伤了商家的胃口,因为他们更看重高频率。”

        大的数据库并不是固定在某个地方的,它一般分散在多个硬盘和多台电脑上。为了确保其运行的稳定性和速度,一个记录可能会分开存储在两三个地方。如果一个地方的记录更新了,其他地方的记录则只有同步更新才不会产生错误。传统的系统会一直等到所有地方的记录都更新,然而,当数据广泛地分布在多台服务器上而且服务器每秒钟都会接受成千上万条搜索指令的时候,同步更新就比较不现实了。因此,多样性是一种解决的方法。

        ZestFinance,一个由谷歌前任首席信息官道格拉斯·梅里尔创立的公司,用自己的经验再次验证了“宽容错误会给我们带来更多价值”这一观点。这家公司帮助决策者判断是否应该向某些拥有不良信用记录的人提供小额短期贷款。传统的信用评分机制关注少量突出的事件,比如一次还款的延迟,而ZestFinance则分析了大量不那么突出的事件。2012年,让ZestFinance引以为豪的就是,它的贷款拖欠率比行业平均水平要低三分之一左右。唯一的得胜之道还是拥抱混杂。

        对“小数据”而言,最基本、最重要的要求就是减少错误,保证质量。因为收集的信息量比较少,所以我们必须确保记录下来的数据尽量精确。无论是确定天体的位置还是观测显微镜下物体的大小,为了使结果更加准确,很多科学家都致力于优化测量的工具。在采样的时候,对精确度的要求就更高更苛刻了。因为收集信息的有限意味着细微的错误会被放大,甚至有可能影响整个结果的准确性。